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The partial wave analysis is an important method of obtaining the collision cross section 
in atomic and nuclear physics. An algorithm is devised to reduce the computing time by using 
a vector computer. In solving the Schrodinger equation numerically, this algorithm vectorizes 
the recurrent calculation in an ingenious way. The method is suited for those problems that 
are related to relatively a small number of quantum states (reaction channels). A simple 
example of the calculation is shown for elastic scattering. A speed-up gain of 8 is achieved in 
comparison to a scalar computer. 0 1989 Academic Press, Inc. 

1. 1NTRoDucT10~ 

Partial wave analysis [ 1 ] has been used to calculate the collision cross section 
in atomic and nuclear physics. The computing methods for the analysis were sum- 
marized in Ref. [2]. The methods have been further improved by many authors 
[3-S]. They were applied, for example, to such subjects as simple elastic scattering 
[9-111 and inelastic and reactive collisions [12]. Although the methods are very 
useful in a low energy region, the numerical calculation usually takes a long 
computation time. 

Vector computers have emerged recently [ 133 and come to be widely used 
[14, 151. They are capable of performing a calculation in a do-loop much faster 
than scalar computers. The faster speed, however, is achieved only for the do-loop 
that contains many parallel calculations of the same kind. When the do-loop has 
a recurrent logic, the processing speed does not become faster at all. This is a 
marked feature of the pipeline processing in the vector computer [16]. 

The vector computer has already been utilized for the partial wave analysis in a 
molecular-molecular collision [ 173. A great number of quantum states (reaction 
channels) were taken into account in this work. There were a lot of parallel calcula- 
tions. Matrices with very large sizes were used and their calculations were vec- 
torized. Some recurrent relations remained without being vectorized in solving the 
expanded Schrodinger equation. However, there were so many parallel calculations 
as a whole that a sufficient vectorization was achieved. The above method 
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then produced an excellent processing speed inspite of the remaining recurrent 
calculation. 

There are many problems which are related to a small number of,parallel calcula- 
tions. It is useful to develop a vectorization method which is applicable to such 
problems. The use of this method allows us to make their computation faster. In 
this case, however, recurrent calculations themselves need to be vectorized. An 
attempt will be made to perform parallel processing directly in solving the 
Schrodinger equation. 

2. METHOD OF SOLVING A SINGLE SCHR~DINGER EQUATION 

The radial Schrodinger equation is usually expressed by the simple form [l] 

d2un/dr2 + Fn . u, = 0, (1) 

where the suffix n is the quantum number of interest, u, the wave function, r the 
radial distance, and F,, a function of r which generally contains the potentials and 
the energy. 

In this section, Eq. (1) is represented by omitting the suflix n: 

d2ufdr2 + F. u = 0. (2) 

For numerical calculation, the radial region is divided into a number of meshes. 
The points of divisions are numbered as i = 1 to N + 1 in the outward direction. 
The function and its derivative with respect to r are designated as ui and U: at the 
ith point, respectively. Equation (2) is converted into an equation by the use of the 
Cauchy matrix [7, 183: 

where the matrix is given by 

(4) 

Other types of propagation matrices have been used in some cases [4, 71. In the 
present study, however, we choose the form of Eq. (3) because of its more suitable 
character for vectorization. 

The vector processor performs calculations of a do-loop in an almost parallel 
manner. The computer attains its ultimate processing speed for the do-loop that has 
complete parallel calculations. One can see in Eq. (3) that ui and u: depend on those 
values at the (i - 1)th point. When it is coded in the usual way, the do-loop 
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contains a typical recurrent logic in the calculation from i= 1 to N. Such a do-loop 
calculation does not make the vector computer any faster. 

Equation (3) is solved in a special way in this study. The values of u and U’ at 
the last point i= N + 1 are given by 

The matrix A is a product of individual matrices Ai at all positions: 

A=i Ai. (6) 
i= 1 

When the radial positions are grouped evenly into m sections, each section has 
p = N/m points. A matrix Bi in the section j is defined as a product of Ai in that 
section: 

Bj= fi Acj-l)p+g. (7) 
g=l 

The matrix A is thus expressed by 

A= fi Bj. 
j= 1 

(8) 

In Eqs. (7) and (8), the multiplication in Eq. (6) is rearranged in a special manner. 
In the evaluation of Eq. (7), the calculation for Bj is independent of that for B,., 
when j’ #j. Therefore, the calculation is suited for the parallel processing by the 
vector computer. The do-loop for evaluating the value of Eq. (7) can be completely 
vectorized with respect to the do-variable j. The do-loop with the index j may 
enclose an inner do-loop with the do-variable g in a natural sense. One can see that 
the calculation results are the same when the inner do-loop is exchanged by the 
outer. For convenience of vectorization, therefore, the do-variables are exchanged 
in this study. The inner do-loop with the index j has a parallel calculation alone, 
while the outer do-loop becomes recurrent with regard to g. Since the principal 
calculation is already vectorized in the inner do-loop, the vector computer can 
evaluate all Bj with a very high speed. 

As indicated in Eq. (6), the final matrix is expressed by a linear product of 
matrices at individual positions. This linearity enables us to vectorize the calcula- 
tion procedure. In contrast, there are other propagation methods for solving wave 
equations. Both R-matrix propagation [4-61 and log-derivative [7,8] methods 
have the matrices that produce nonlinear relations in their propagation calcula- 
tions. Since the calculation procedure inevitably becomes recurrent for these 
methods, they are not suited for direct vectorization. 
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3. COUPLED EQUATIONS 

In a complex collision problem, coupled equations [2] are usually used, differing 
from Eq. (1). They have the form 

d2uJdr2 + Fu = 0, (9) 

where u stands for a vector expressing wave functions. The wave functions of 
different quantum states (reaction channels) are contained in u as elements of the 
vector. The operator matrix F couples the individual wave functions in u, and is 
converted into a diagonal matrix D by introducing a unitary matrix T: 

D=T-‘FT. (10) 

The vector u is transformed into 

v=T-+I. (11) 

Neglecting higher order terms [19], we have an equation without coupling: 

d2vldr2 + Dv = 0. (12) 

A global vector and a global matrix are defined to extend the relationship in 
Eq. (3). In a region between ri and ri+ 1, an equation is obtained which is similar 
to Eq. (3): 

(13) 

The matrix Gi has a size 2N x 2N. This matrix is derived from the diagonal matrix 
Di using a constant or linear reference potential [18, 191. Then, the original wave 
functions are expressed by 

where 

A;=(: ii)Gi(Tbl $1). 
A matrix A is defined as a products of Ai: 

(14) 

(15) 

A= r”r Ai. 
;= I 

(16) 
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The wave function at the last point is thus written by 

(17) 

Equations (16) and (17) have the same form as Eqs. (5) and (6). The rearrange- 
ment method used in Eq. (7) is applicable to Eq. (16). Hence, vector processing is 
useful in evaluating Eq. (16). The collision cross section is obtained from the results 
at a radial distance sufficiently far from the origin. The cross section is obtained, for 
instance, from the reactance matrix [ 11 that is constructed by the use of these 
values. 

4. SIMPLE EXAMPLE OF THE VECTOR CALCULATION 

As an example of calculation, the method in Section 2 is applied to the elastic 
scattering of electrons by a simple spherical potential 19, lo]. In this case, the 
quantum number n in Eq. (1) stands for the angular momentum 1. Then, n is 
replaced by I in the following. The function F becomes F(r) = k* - U(r) - 1(1+ 1)/r*, 
where k is the wave number of the incident electron, and U(r) the potential. The 
increment h of the radial point ri is taken to be constant along the whole length. 
The boundary condition appears at the origin (r = 0) as U, = 0. The Magnum 
approximation [19] is made to first order in h. When a matrix M is defined as 

(18) 

the matrix Ai in Eq. (4) becomes [19] 

Ai=exp(hM(ri+h/2)) 

( 

cos(;l,h) A;‘sin(&h) 
= lli sin(1,h) > cos(&h) ’ (19) 

where 
1: = -F(r, + h/2). (20) 

When F> 0, the value of Ai becomes complex so that the trigonometric functions 
in Eq. (19) are equivalently written by hyperbolic ones. It may be possible to use 
a linear reference potential for creating the matrix elements [18]. In the present 
work, nevertheless, Eqs. (18) and (19) are chosen for their simplicity. The value of 
the radial wave function U, is computed from the origin in the outward direction 
according to Eqs. (7) and (8). The phase shift qr is determined by comparing the 
calculated values of uI with its asymptotic form Cl] 

U, CC k ~ i sin(k . r - 17r/2 + ye,) (21) 

at a distance sufficiently far from the origin. 
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5. CALCULATION PROCEDURE 

Figure 1 shows the procedure for the calculation described in Section 4. The 
partial wave has an angular momentum 1. A radial position rs is first taken as a 
starting point. Calculations are divided into three stages A, B, and C. In stage A, 
a certain radial distance d, is added to I,. The calculation goes from r, = rs to 
r ,,, + 1 = rs + d,. The method is explained in Fig. 2. The matrices B, are evaluated 
according to Eq. (7). They are calculated in the double do-loop with the 
do-variables j and g as shown in Fig. 2. The inner do-loop carries out the multipli- 
cation of individual matrices Ai by the do-variable j. Since this calculation is 
completely independent of the other with regard to the do-variable j, there is no 
recursion in the inner do-loop. It is therefore possible to vectorize the inner do-loop 
by the do-variable j. 

Stage B calculates the matrix A as the product of the matrices Bj according to 
Eq. (8). Although this calculation is basically recurrent, it is evaluated again by 
vector processing. The matrices Bj are classified into q groups, so that the number 
of sections in each group becomes s = m/q. A matrix C, in group t is expressed as 
product of Bj: 

C,= fi Bcr-ljs++ (22) 
d=l 

Equation (8) is thus written by 

A= fj C,. (23) 
r=1 

The do-loop for evaluating Eq. (22) is vectorized with respect to t for the same 
reason as for Eq. (7). The procedure is shown in Fig. 3. After the vector calculation, 
the matrix A is obtained by scalar processing by Eq. (23). The functions uN+ I and 
uX+ 1 at the last point rN+ 1 are easily obtained from Eq. (5). 

Stage A: Evaluation of 9, in the region 
r=r,tor,+d,. 

Stage B: Evaluation of the matrices C, and A 
and the functions uN + , and ub + , 

Stage C: Evaluation of phase shift and check 
of its convergence. 

FIG. 1. Outline of the phase shift calculation. 
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(1) Initial value of B, (vector processing) 
Doj=l,m 

Continue 

(2) Matrix product for B, (vector processing) 
Dog= 1,p 

Doj= 1, m 
i=(j- l)p+g 

B,=B, 
cos(l$) 1;’ sin(L, h) 

Ai sin(l,h) cos(l2,h) > 

Continue 
Continue 

FIG. 2. Detailed procedure in stage A. 

(1) Initial value of C, (vector processing) 
Dor=l,q 

c,= ’ O 
( 1 0 1 

Continue 

(2) Matrix product for C, (vector processing) 
Do d= 1, s 

Dor=l,q 
C,=CrBw,,s+ci 
Continue 

Continue 

(3) Evaluation of matrix A (scalar processing) 

1 0 
A= 0 1 ( > 
Dor=l,q 
A=AC, 
Continue 

(4) Evaluation of uN +, and ub+, (scalar processmg) 

(::::)=A(:$ 

23 

FIG 3. Detailed procedure in stage B. 
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In stage C, the phase shift qr is obtained from the relation 

k. rN+, -lrc/2+q,=arctan(k.u,+ &)N+,). (24) 

The procedure is returned to stage A to continue the calculation. The last position 
rN+ 1 is regarded as an initial position rs at stage A. If the phase shift is converged, 
the calculation is completed. 

6. COMPUTATION TIME 

A program was coded in FORTRAN according to the scenario in the preceding 
section. This program was run in both vector and scalar computers at the computer 
center of Kyushu University. The computers were Fujitsu FACOM VP-200 as the 
vector, and M-780 as the scalar. The processing speed in the maximum performance 
was 540 MFLOPS for the vector computer. The computation speed was an order 
of magnitude lower in the scalar computer than in the vector computer. The 
do-loops in stage A (Eq. (7)) and a part of stage B (Eq. (22)) were vectorized in 
the vector computer. Since the amount of calculations were less in Eq. (22) than in 
Eq. (7), the vectorization for Eq. (22) was less effective for the entire computation 
time. 

The calculation was performed on the elastic scattering of an electron by a neon 
atom. This problem is similar to our earlier work [lo]. The spherically symmetric 
potential was simply approximated by a simple screened potential [20]. The 
incident energy of the electron was taken in an intermediate region of 200 to 
1000 eV, i.e., k = 2.7 to 6.1 in atomic units (a.u.). The parameters were as follows: 
h = O.OOS(a.u.), & = lOO(a.u.), N= 2 x 104, m = 1000, p = 20, q = 50, and s = 20. The 
fraction of the vectorization was as high as 99.9% in this code. The computation 
results are shown in Table I for the angular momentums I = 3 and 10. The vector 
computer carried out the calculation about 8 times as fast as the scalar computer 
did for the same program. This was a great improvement in the computating time. 

TABLE I 

Computation Time by the Scalar and the Vector Computers 

Electron 
energy 
(3 

Computation time 
Radial Phase Vector/ 
region shift Scalar Vector scalar 

I (a.u.) bad) bs) (ms) ratio 

200 3 l&300 0.367 721 85 8.5 
200 10 O-800 0.0229 1890 227 8.3 
500 3 &300 0.543 714 94 7.6 
500 10 0.0437 1417 170 8.3 

1000 3 G-300 0.613 720 85 8.5 
1000 10 0.0764 1420 170 10.1 
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7. CHARACTERISTICS OF THE PRESENT METHOD 

The simple example was described in the preceding section. This method enabled 
us to vectorize the calculation for a single Schriidinger equation. The method 
applies to the collision that is apparently related to a small number of parallel 
calculations. When the incident energy becomes higher and is in the intermediate 
region, the convergence of the phase shifts gets slower [lo]. The calculation needs 
to go a larger distance before the phase shifts converge, so that it takes a longer 
time to complete the calculation. In such a case the present method is very useful 
for reducing computation time. 

Many collision problems are described by coupled equations. The present 
method is successfully applied to such problems when they are related to a 
relatively small number of quantum states (reaction channels). However, when a 
great number of quantum states is involved, there are apparently a lot of parallel 
calculations. Then, sufficient vectorization may be achieved by methods other than 
the present one. In fact, vector computers have been used [ 173 by a method based 
on R-matrix propagation [S]. 

8. CONCLUSION 

The phase shift calculation was vectorized for each quantum state. The use of the 
Cauchy matrix in the difference equation enabled us to solve the wave equation 
efficiently by using a vector computer. The speed-up gain of 8 in the computation 
time was obtained in comparison with that of the scalar computer. The present 
method is considered to be specially suitable for the partial wave calculation that 
relates to a relatively small number of reaction channels. 
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